Drug development

Artificial Intelligence

Using synthetic biology and AI to address global antimicrobial resistance threat

Driven by overuse and misuse of antibiotics, drug-resistant infections are on the rise, while development of new antibacterial tools has slowed.

Read More
Artificial Intelligence

3 Questions: Using AI to accelerate the discovery and design of therapeutic drugs

Professor James Collins discusses how collaboration has been central to his research into combining computational predictions with new experimental platforms.

Read More
Artificial IntelligenceMachine Learning

MIT scientists debut a generative AI model that could create molecules addressing hard-to-treat diseases

BoltzGen generates protein binders for any biological target from scratch, expanding AI’s reach from understanding biology toward engineering it.

Read More
Artificial IntelligenceMachine Learning

AI maps how a new antibiotic targets gut bacteria

MIT CSAIL and McMaster researchers used a generative AI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria, speeding up a process that normally takes years.

Read More
Artificial IntelligenceMachine Learning

MIT researchers develop AI tool to improve flu vaccine strain selection

VaxSeer uses machine learning to predict virus evolution and antigenicity, aiming to make vaccine selection more accurate and less reliant on guesswork.

Read More
Artificial IntelligenceMachine Learning

A new model predicts how molecules will dissolve in different solvents

Solubility predictions could make it easier to design and synthesize new drugs, while minimizing the use of more hazardous solvents.

Read More
Artificial Intelligence

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

Read More
Artificial IntelligenceMachine Learning

Toward video generative models of the molecular world

Starting with a single frame in a simulation, a new system uses generative AI to emulate the dynamics of molecules, connecting static molecular structures and developing blurry pictures into videos.

Read More
Artificial IntelligenceMachine Learning

MIT researchers introduce Boltz-1, a fully open-source model for predicting biomolecular structures

With models like AlphaFold3 limited to academic research, the team built an equivalent alternative, to encourage innovation more broadly.

Read More
Artificial IntelligenceMachine Learning

MIT-Takeda Program wraps up with 16 publications, a patent, and nearly two dozen projects completed

The program focused on AI in health care, drawing on Takeda’s R&D experience in drug development and MIT’s deep expertise in AI.

Read More