News Feed

Artificial Intelligence and Machine Learning in Software as a Medical Device – FDA.gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.
The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Update: March 15, 2024
The U.S. Food and Drug Administration (FDA) issued “Artificial Intelligence and Medical Products: How CBER, CDER, CDRH, and OCP are Working Together,” which outlines the agency’s commitment and cross-center collaboration to protect public health while fostering responsible and ethical medical product innovation through Artificial Intelligence.
Download the Paper (PDF – 1.2 MB)
Artificial intelligence (AI) and machine learning (ML) technologies have the potential to transform health care by deriving new and important insights from the vast amount of data generated during the delivery of health care every day. Medical device manufacturers are using these technologies to innovate their products to better assist health care providers and improve patient care. The complex and dynamic processes involved in the development, deployment, use, and maintenance of AI technologies benefit from careful management throughout the medical product life cycle.
Artificial Intelligence is a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations, or decisions influencing real or virtual environments. Artificial intelligence systems use machine- and human-based inputs to perceive real and virtual environments; abstract such perceptions into models through analysis in an automated manner; and use model inference to formulate options for information or action.
Machine Learning is a set of techniques that can be used to train AI algorithms to improve performance at a task based on data.
Some real-world examples of artificial intelligence and machine learning technologies include:
Additional information can be found at Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence.
AI/ML technologies have the potential to transform health care by deriving new and important insights from the vast amount of data generated during the delivery of health care every day. Medical device manufacturers are using these technologies to innovate their products to better assist health care providers and improve patient care. One of the greatest benefits of AI/ML in software resides in its ability to learn from real-world use and experience, and its capability to improve its performance.
The FDA reviews medical devices through an appropriate premarket pathway, such as premarket clearance (510(k)), De Novo classification, or premarket approval. The FDA may also review and clear modifications to medical devices, including software as a medical device, depending on the significance or risk posed to patients of that modification. Learn the current FDA guidance for risk-based approach for 510(k) software modifications.
The FDA’s traditional paradigm of medical device regulation was not designed for adaptive artificial intelligence and machine learning technologies. Many changes to artificial intelligence and machine learning-driven devices may need a premarket review.
On April 2, 2019, the FDA published a discussion paper “Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) – Discussion Paper and Request for Feedback” that describes a potential approach to premarket review for artificial intelligence and machine learning-driven software modifications.
In January 2021, the FDA published the “Artificial Intelligence and Machine Learning Software as a Medical Device Action Plan” or “AI/ML SaMD Action Plan.” Consistent with the action plan, the FDA later issued the following documents:
On March 15, 2024 the FDA published the “Artificial Intelligence and Medical Products: How CBER, CDER, CDRH, and OCP are Working Together,” which represents the FDA’s coordinated approach to AI. This paper is intended to complement the “AI/ML SaMD Action Plan” and represents a commitment between the FDA’s Center for Biologics Evaluation and Research (CBER), the Center for Drug Evaluation and Research (CDER), and the Center for Devices and Radiological Health (CDRH), and the Office of Combination Products (OCP), to drive alignment and share learnings applicable to AI in medical products more broadly.
If you have questions about artificial intelligence, machine learning, or other digital health topics, ask a question about digital health regulatory policies.

Sign up to receive email updates on Digital Health.


This article was autogenerated from a news feed from CDO TIMES selected high quality news and research sources. There was no editorial review conducted beyond that by CDO TIMES staff. Need help with any of the topics in our articles? Schedule your free CDO TIMES Tech Navigator call today to stay ahead of the curve and gain insider advantages to propel your business!

Leave a Reply